Combinatorial invariant theory of projective reflection groups

نویسنده

  • Fabrizio Caselli
چکیده

We introduce the class of projective reflection groups which includes all complex reflection groups. We show that several aspects involving the combinatorics and the representation theory of complex reflection groups find a natural description in this wider setting. Résumé. On introduit la classe des groupes de réflexions projectifs, ce qui généralises la notion de groupe engendré par des réflexions. On montre que plusieurs aspects concernants la combinatoire et la théorie des representations des groupes de reflexions complèxes trouvent une description naturelle dans ce cadre plus général.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumerating projective reflection groups

Projective reflection groups have been recently defined by the second author. They include a special class of groups denoted G(r, p, s, n) which contains all classical Weyl groups and more generally all the complex reflection groups of type G(r, p, n). In this paper we define some statistics analogous to descent number and major index over the projective reflection groups G(r, p, s, n), and we ...

متن کامل

ar X iv : 0 90 2 . 06 84 v 1 [ m at h . C O ] 4 F eb 2 00 9 PROJECTIVE REFLECTION GROUPS

We introduce the class of projective reflection groups which includes all complex reflection groups. We show that several aspects involving the combinatorics and the representation theory of all non exceptional irreducible complex reflection groups find a natural description in this wider setting.

متن کامل

Geometric Invariant Theory via Cox Rings

We consider actions of reductive groups on a varieties with finitely generated Cox ring, e.g., the classical case of a diagonal action on a product of projective spaces. Given such an action, we construct via combinatorial data in the Cox ring all maximal open subsets such that the quotient is quasiprojective or embeddable into a toric variety. As applications, we obtain an explicit description...

متن کامل

CYCLIC COVERINGS OF THE p-ADIC PROJECTIVE LINE BY MUMFORD CURVES

Exact bounds for the positions of the branch points for cyclic coverings of the p-adic projective line by Mumford curves are calculated in two ways. Firstly, by using Fumiharu Kato’s ∗-trees, and secondly by giving explicit matrix representations of the Schottky groups corresponding to the Mumford curves above the projective line through combinatorial group theory.

متن کامل

Symplectic reflection algebras and deformation quantization

quantization. Ivan Losev (Northeastern). Symplectic reflection algebras are basically quantizations of symplectic quotient singularities i.e, varieties V/G, where V is a symplectic vector space. In my first lecture I will introduce these algebras. For certain types of groups – wreath-products G = Sn i Γ, where Γ is a finite subgroup of SL2(C), the singularity C/G can be realized in an alternati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009